ISyE 6416 - Computational Statistics - Spring 2016
Final Report

Team Member Names: Danielle Boccelli and William Henry Taslim

Project Title: Comparison of Classification Methods in Identifying Handwritten
Digits

Problem Statement

The availability of big data, robust algorithms, and powerful computers has
led to rapid progress in handwriting recognition technology. This technology plays
a significant role in the technological advancement of recognizing the words on
scanned documents and potentially, in effectively verifying signatures. Our team is
interested in comparing the efficiency and effectiveness of various classification
methods that we learned in ISyE 6416 in identifying handwritten digits. Methods
examined include: the expectation-maximization (EM) algorithm, the random forest
algorithm, and k-means clustering. The handwritten digits dataset used for this
project was developed specifically for use in machine learning research.

Data Source

The data source for this project is the Semeion Handwritten Digit Dataset
(available at: archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit). The
dataset was originally collected for the Semeion Research Center of Sciences and
Communication in Rome, Italy for usage in machine learning research - specifically,
in classification.

The Semeion dataset consists of 1593 handwritten digits written by a total of
80 individuals. These digits were scanned, and transformed into a 16x16 “pixel”
grayscale image (for a total of 256 data points for each handwritten digits). Each
pixel is the average gray value from the digit, generated by stretching the image.
The grayscale images were then converted to black and white images (boolean
values), by using a threshold for what is considered black, and what is considered
white. Each individual from which the data was collected, was asked to write each
digit (zero through nine) twice: the first in their normal way of writing, and the
second quickly (or sloppily compared to their standard writing). An example of the
final image, after transformations, can be seen in Figure 1 on the next page.

=

L7121
S Gl 705

Figure 1: An example of the handwritten digits from the dataset

Methodology

The goal of the project is to compare different classification methods using
the Semeion dataset. Although each individual is bound to have variations in their
handwriting, the general structure of the individual digits should be enough to
provide some distinction for the purposes of classification. Both k-means and the
EM algorithm were coded in R, as well as all measures of accuracy. Random forest
was implemented using an existing R package (randomForest), but accuracy will be
coded in R as it was for k-means and EM. All R code for this project can be seen in
Appendix B.

The original dataset was made up of 1597 rows and 266 columns - 256 of
which were predictors (pixels), and 10 of which were response columns (rather
than coding the response as a 0-9 digit in one column, the response was made up
of a series of binary columns - one of which contained a 1 for each row, and the
rest were 0s). In order to reduce the number of columns in the dataset, principal
component analysis was completed using a built-in function in R (prcomp). The first
ten principal components were run through each of the algorithms. Ten was chosen
because that is the point when the added value of the next principal component
starts to level off. This can be seen in Figure 2 on the next page.

Each method was run to try to reduce the number of misclassification that
occurred. K-means was ran multiple times, with random starts, in order to minimize
the possible effect of local minima in distance measurements. The EM algorithm
was run until the expected log-likelihood reached a level of convergence
(essentially, when the cluster identifications stopped changing). EM gives a
probability that a point is in a cluster, and so the cluster with the highest probability
at convergence will be taken as the final cluster for a given digit. Random forest
was ran using 10-fold cross validation (splitting the data into ten sections, rotating
through which section was the test set, and using the remaining nine sections as

the training set at each iteration). The predictions for each testing set for random
forest were combined into one full set of prediction values.

Accuracy was measured (for each method) by calculating misclassification
rate (the percentage of digits that were not correctly identified). This was done by
looking for the cluster that contained the highest number of occurrences of a digit,
and dividing by the total number of occurrences of that digit. Care had to be taken
to ensure that a cluster was not identified as being the main cluster for multiple
digits (some digits have a lot of similarities, and may be almost evenly split
between two clusters, which could make one cluster appear to be the real cluster
for more than one digit). Total accuracy was measured by taking a weighted
average of the misclassification rates.

Principal Components

/
/

3.0
|
o

Variances
25

/

/

Figure 2: Principal Component Analysis Plot

Final Results and Evaluation

Using the methodologies listed previously, the three models were ran, and
misclassifications rates were calculated. As can be seen in Figure 3 on the next
page (and Table 1 in Appendix A), all models were able to properly classify more
than half of the digits in the dataset (a random guess would only be accurate 10%
of the time). Random forest was the most successful (with only 11.3%

misclassification), EM came in second (with 32.1% misclassification), and K-means
was the weakest performer (with 41.5% misclassification).

There was also a difference in misclassification rates among the different
digits. The digits 3, 6, and 7 were classified more accurately on average, and they
were classified more accurately in the individual classification methods (when
compared to the overall misclassification rate). The digits 1, 2, and 5 were classified
with less accuracy overall, and they also underperformed the overall classification
accuracy for each method.

Model Misclassification per Digit

70.0%
60.0%
s 50.0%
8
e
g 400%
= mEM
7]
&8 300% -
2 M K-Means
=

20.0% - W Random Forest

10.0% M Average

00%

Digit

Figure 3: Model Comparison

Additional Analysis

Although the principal component analysis suggested that ten principal
components be used, this was looked at in more depth using the most successful
model - random forest. Figure 4 on the next page (and Table 2 in Appendix A),
shows that there is a significant decrease misclassification from using 5 principal
components, to wusing 10 principal components. Although misclassification
decreases from 10 principal components to 15, and again when increase to 20,
these changes are not as significant as the change from 5 to 10. The accuracy of
some digits even increases when going from 10 to 15 (6, 8) and 15 to 20 (0, 4, 5,
8).

Mischssification

Principal Component Misclassification per Digit

40.0%

*

35.0% r Y

30.0% +

25.0% g
20.0% * * ¢ 4

15.0% £

i : 3
100% # A ! ; !] E
A,

4
-+

5.0% B

ﬂ.ﬂ% T T T T T T T T T

10

*5
H10
A 15
.20

Figure 4: Principal Component Analysis Comparison

Appendix A

Table 1: Comparison of Methods and Digits

EM K-Means Random Average
Forest
0o 46.6% 13.7% 5.6% 21.9%
1 40.7% 58.6% 10.5% 36.6%
2 33.3% 64.2% 12.0% 36.5%
3 11.9% 17.6% 12.6% 14.0%
4 24.2% 47.8% 13.7% 28.6%
5 54.1% 62.9% 6.9% 41.3%
6 28.6% 31.1% 5.6% 21.7%
7 17.7% 19.0% 11.2% 16.0%
8 27.1% 57.2% 9.7% 31.3%
9 36.7% 43.0% 26.0% 35.2%
Overall 32.1% 41.5% 11.3% 28.3%

Table 2: Principal Component Analysis

5 10 15 20
0 11.2% 5.6% 4.3% 4.4%
1 15.4% 10.5% 9.3% 7.4%
2 30.2% 12.0% 10.7% 10.1%
3 20.8% 12.6% 12.6% 10.7%
4 13.7% 13.7% 11.8% 13.0%
5 19.5% 6.9% 6.9% 7.6%
6 9.3% 5.6% 6.8% 5.6%
7 20.9% 11.4% 10.8% 10.8%
8 34.2% 9.7% 10.3% 12.3%
9 37.3% 26.0% 21.5% 20.3%
Overall 21.2% 11.3% 10.5% 10.2%

Appendix B

#EM Algorithm
require(mvtnorm)
require(emdbook)
require(randomForest)
set.seed(123456)

#Read in data and separate labels
data=read.csv("/dboccelli3/vlab/desktop/semeion.csv", header=FALSE)
X=data.matrix(data[,1:d])
Labels=apply(data[,257:266],1,function(xx){return(which(xx=="1")-1)})
d = 256

k =10
n = 1593
q=10

#Assign clusters
Z = array(0,c(n,k))
kmeansModel = kmeans(X, centers=k, nstart=50,iter.max=30)
for (i in 1:length(kmeansModel$cluster)){
for (j in 1:k){Z[i,j]=ifelse(kmeansModel$cluster[i]==j,1,0)}}

#Parameter initialization
muk = array(0,c(k,d))
muk = kmeansModel$centers
Nk = colSums(Z)
pik = Nk/n
bigSigma = array(0,c(d,d,k))
V = array(0,c(d,d,k))
for(i in 1:k){sumV = matrix(0,d,d)
for(j in 1:n){sumV = sumV+(X[j,]-mukl[i,])%*%t(X[j,]-mukl[i,])*Z[j,i]}
V[,,i] = sumV/NK[i]
SVD = svd(V[,,i]) #from notes
littleSigma = 1/(d-q)*sum(SVD$d[(gq+1):d])
Wq = SVD$vV[,1:q]%*%diag(sqrt(SVD$d[1:q]-littleSigma))
bigSigmal,,i] = Wq%*%t(Wq)+littleSigma*diag(1,d,d)}
P = matrix(0,n, k)
for(i in 1:k){P[,i] = dmvnorm(X, muk[i,], bigSigmal[,,i])}
likelihood = sum(log(P% *%pik))

for(step in 0:20){
#Parameter update
Z = matrix(0,n,k)

for(i in 1:k){Z[,i] = dmvnorm(X, muk[i,], bigSigmal[,,i])*pik[i]}
Z = t(apply(Z,1,function(x){return(x/sum(x))}))

Nk = colSums(2Z)

pik = Nk/n

muk = (t(Z)%*%X)/Nk

V = array(0,dim=c(d,d,k))

for(i in 1:k){sumV = matrix(0,d,d)

for(j in 1:n){sumV = sumV+(X[j,]-mukl[i,])%*%t(X[j,]-mukl[i,1)*Z[j,i]}
V[,,i] = sumV/NK[i]

SVD = svd(V[,,i])

littleSigma = 1/(d-q)*sum(SVD$d[(g+1):d])

Wq = SVD$v[,1:q]%*%diag(sqrt(SVD$d[1:q]-littleSigma))
bigSigmal,,i] = Wg%*%t(Wq)+littleSigma*diag(1,d,d)}
#Likelihood calculation

for(i in 1:k){P[,i] = dmvnorm(X, muk[i,], bigSigmal[,,i])*pik[i]}
newLikelihood = sum(log(P%*%pik))

likelihood = cbind(likelihood,newLikelihood)}

#New label calculation

newZ = array(0,c(n,k))

for(i in 1:n){newZ[i,which.max(Z[i,])] = 1} #label = k with highest p
newlabels=apply(newZ,1,function(xx){return(which(xx=="1")-1)})

#5 Accuracy Assessment
misCatRateEM0=1-sort(table((newLabels[which(Labels==0)])),decreasing=TRUE)[
1]/length(which(Labels==0))
misCatRateEM1=1-sort(table((newLabels[which(Labels==1)])),decreasing=TRUE)[
1]/length(which(Labels==1))
misCatRateEM2=1-sort(table((newLabels[which(Labels==2)])),decreasing=TRUE)[
1]/length(which(Labels==2))
misCatRateEM3=1-sort(table((newLabels[which(Labels==3)])),decreasing=TRUE)[
1]/length(which(Labels==3))
misCatRateEM4=1-sort(table((newLabels[which(Labels==4)])),decreasing=TRUE)[
1]/length(which(Labels==4))
misCatRateEM5=1-sort(table((newLabels[which(Labels==5)])),decreasing=TRUE)[
1]/length(which(Labels==5))
misCatRateEM6=1-sort(table((newLabels[which(Labels==6)])),decreasing=TRUE)[
1]/length(which(Labels==6))
misCatRateEM7=1-sort(table((newLabels[which(Labels==7)])),decreasing=TRUE)[
1]/length(which(Labels==7))
misCatRateEM8=1-sort(table((newLabels[which(Labels==8)])),decreasing=TRUE)[
1]/length(which(Labels==8))

misCatRateEM9=1-sort(table((newLabels[which(Labels==9)])),decreasing=TRUE)[
1]/length(which(Labels==9))
overallMisCatEM=(misCatRateEM0O*length(which(Labels==0))+misCatRateEM1*len
gth(which(Labels==1))+misCatRateEM2*length(which(Labels==2))+misCatRateEM
3*length(which(Labels==3))+misCatRateEM4*length(which(Labels==4))+misCatR
ateEM5*length(which(Labels==5))+misCatRateEM6*length(which(Labels==6))+mi
sCatRateEM7*length(which(Labels==7))+misCatRateEM8*length(which(Labels==
))+misCatRateEM9*length(which(Labels==9)))/1597

#K means

predictorsK=data.matrix(data[,1:d])
responseK=apply(data[,257:266],1,function(xx){return(which(xx=="1")-1)})
prcompsK = prcomp(predictorsK)$x[,1:10]

#create random starts

centers = matrix(0,10,10)

for (i in 1:10){centers[i,]<-sample(c(0,1),10,replace=TRUE)}

centers = cbind(centers,1:10)

#PC Plot
plot(prcomp(predictorsK),type=

,main="Principal Components")

XNew = matrix(0,dim(prcompsK)[1],dim(prcompsK)[2]+1)
#assign random group
for(i in 1:dim(prcompsK)[1]){XNewl[i,]<- centers[sample(1:10,1),]1}

#calculate centroids

means = matrix(0,10,10)

for (kin 1:10){
inCluster = matrix(0,dim(prcompsK)[1],10)
for (i in 1:dim(prcompsK)[1]){if (XNew[i,11]==k){inCluster[i,]<-prcompsK[i,]1}}
means[k,]<- as.array(colMeans(inCluster[which(inCluster[,1]!'=0),]1))}

#minimize distance

cluster = matrix(0,dim(X)[1],1)

int=0

while (int<40){for (i in 1:dim(X)[1]){error = matrix(0,10,1)
for(m in 1:10){error[m,] = sum((prcompsK[i,]-means[m,])**2)}
min = which.min(error)
cluster[i,]<-min}

for (k in 1:10){inCluster = matrix(0,dim(X)[1],10)
for (i in 1:dim(prcompsK)[1]){if (cluster[i,1]==k){inCluster[i,]<-prcompsK[i,]}}
if (length(inCluster[which(inCluster[,1]!=0),])>10){
means[k,]<- colMeans(inCluster[which(inCluster[,1]!=0),])}

10

if (length(inCluster[which(inCluster[,1]!'=0),])==10){
means[k,] = inCluster[which(inCluster[,1]!'=0),]1}}
int=int+ 1}

misCatRateK0O=1-sort(table((cluster[which(Labels==0)])),decreasing=TRUE)[1]/len
gth(which(Labels==0))
misCatRateK1=1-sort(table((cluster[which(Labels==1)])),decreasing=TRUE)[1]/len
gth(which(Labels==1))
misCatRateK2=1-sort(table((cluster[which(Labels==2)])),decreasing=TRUE)[1]/len
gth(which(Labels==2))
misCatRateK3=1-sort(table((cluster[which(Labels==3)])),decreasing=TRUE)[1]/len
gth(which(Labels==3))
misCatRateK4=1-sort(table((cluster[which(Labels==4)])),decreasing=TRUE)[1]/len
gth(which(Labels==4))
misCatRateK5=1-sort(table((cluster[which(Labels==5)])),decreasing=TRUE)[2]/len
gth(which(Labels==5))
misCatRateK6=1-sort(table((cluster[which(Labels==6)])),decreasing=TRUE)[1]/len
gth(which(Labels==6))
misCatRateK7=1-sort(table((cluster[which(Labels==7)])),decreasing=TRUE)[1]/len
gth(which(Labels==7))
misCatRateK8=1-sort(table((cluster[which(Labels==8)])),decreasing=TRUE)[1]/len
gth(which(Labels==8))
misCatRateK9=1-sort(table((cluster[which(Labels==9)])),decreasing=TRUE)[1]/len
gth(which(Labels==9))
overallMisCatK=(misCatRateKO*length(which(Labels==0))+misCatRateK1*length(
which(Labels==1))+misCatRateK2*length(which(Labels==2))+misCatRateK3*lengt
h(which(Labels==3))+misCatRateK4*length(which(Labels==4))+misCatRateK5*le
ngth(which(Labels==5))+misCatRateK6*length(which(Labels==6))+misCatRateK7
*length(which(Labels==7))+misCatRateK8*length(which(Labels==8))+misCatRate
K9*length(which(Labels==9)))/1597

#R Package Model
#Random Forest
predictors=data.matrix(data[1:1590,1:d])
response=apply(data[,257:266],1,function(xx){return(which(xx=="1")-1)})
set = rep(c(1,2,3,4,5,6,7,8,9,0),159)
prcomps = prcomp(predictors)$x[,1:10]
responses = c()
forestPrediction = array(0,dim=c(159,10))
for(i in 1:10){responses = c(responses,response[which(set==(i-1))])}
for (i in 1:10){testPredictors = prcomps[which(set == (i-1)),]
testResponse = response[which(set == (i-1))]
trainPredictors = prcomps[which(set = (i-1)),]

11

trainResponse = response[which(set !'= (i-1))]
forestModel=randomForest(as.factor(trainResponse)~.,data=trainPredictors,
ntree=100)
forestPrediction[,i] = predict(forestModel,newdata=data.frame(testPredictors))}

forestPredictionFinal = c()
for (i in 1:10){forestPredictionFinal = c(forestPredictionFinal,forestPrediction[,i])}

misCatRateforestO=1-sort(table((forestPredictionFinal[which(responses==0)])),dec
reasing=TRUE)[1]/length(which(Labels==0))
misCatRateforestl=1-sort(table((forestPredictionFinal[which(responses==1)])),dec
reasing=TRUE)[1]/length(which(Labels==1))
misCatRateforest2=1-sort(table((forestPredictionFinal[which(responses==2)])),dec
reasing=TRUE)[1]/length(which(Labels==2))
misCatRateforest3=1-sort(table((forestPredictionFinal[which(responses==3)])),dec
reasing=TRUE)[1]/length(which(Labels==3))
misCatRateforest4=1-sort(table((forestPredictionFinal[which(responses==4)])),dec
reasing=TRUE)[1]/length(which(Labels==4))
misCatRateforest5=1-sort(table((forestPredictionFinal[which(responses==5)])),dec
reasing=TRUE)[1]/length(which(Labels==5))
misCatRateforest6=1-sort(table((forestPredictionFinal[which(responses==6)])),dec
reasing=TRUE)[1]/length(which(Labels==6))
misCatRateforest7=1-sort(table((forestPredictionFinal[which(responses==7)])),dec
reasing=TRUE)[1]/length(which(Labels==7))
misCatRateforest8=1-sort(table((forestPredictionFinal[which(responses==8)])),dec
reasing=TRUE)[1]/length(which(Labels==8))
misCatRateforest9=1-sort(table((forestPredictionFinal[which(responses==9)])),dec
reasing=TRUE)[1]/length(which(Labels==9))
overallMisCatforest=(misCatRateforestO*length(which(Labels==0))+misCatRatefor
estl*length(which(Labels==1))+misCatRateforest2*length(which(Labels==2))+mi
sCatRateforest3*length(which(Labels==3))+misCatRateforest4*length(which(Label
s==4))+misCatRateforest5*length(which(Labels==5))+misCatRateforest6*length(
which(Labels==6))+misCatRateforest7*length(which(Labels==7))+misCatRatefore
st8*length(which(Labels==8))+misCatRateforest9*length(which(Labels==9)))/159
7

12

